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Abstract

We demonstrate a new framework for analyzing and controlling dis-
tributed systems, by solving constrained optimization problems with an
algorithm based on that framework. The framework is an information-
theoretic extension of conventional full-rationality game theory to al-
low bounded rational agents. The associated optimization algorithm is
a game in which agents control the variables of the optimization prob-
lem. They do this by jointly minimizing a Lagrangian of (the probability
distribution of) their joint state. The updating of the Lagrange parameters
in that Lagrangian is a form of automated annealing, one that focuses the
multi-agent system on the optimal pure strategy. We present computer
experiments for the k-sat constraint satisfaction problem and for uncon-
strained minimization of NK functions.

1 Introduction

Recently, a new framework called probability collectives (PC) has been designed for for
analyzing, optimizing and controlling distributed systems [1, 2, 3]. One goal of this work
is to develop algorithms by which a distributed collection of agents can be coordinated to
perform desired tasks. Here we consider constrained optimization tasks where a distributed
solution may be desired either because the variables and constraints between variables are
spread across many agents (as in distributed design or supply chain application), or simply
because it is advantageous to £nd a solution method which can be easily parallelized so
that large problem instances may be solved.

The natural way to map a multi-agent collective onto an optimization task is to assign an
agent to each variable xi in the problem. If the domain of the ith variable is Xi then the
ith agent is responsible for selecting a value for xi from Xi. The |Xi| possible selections
become the possible moves of the agent. The joint set of n variables (agents) describing
the system is indicated as x = [x1, · · · , xn] ∈ X with X ≡ X1 × · · · × Xn.1 Unlike
many optimization methods the variables are set through the determination of a probability
distribution q over X . A Lagrangian function, L : Q 7→ R, is de£ned and minimized to
determine the optimal q from within a set Q of possible probability distributions over X .

Optimizing over Q rather than X simpli£es optimization tasks over discrete variables.

1Vectors are indicated in bold font and scalars are in regular font.



Since q ∈ Q is a vector in a Euclidean space, the search can be done with continuous tech-
niques like gradient descent or Newton’s method – even if X is a categorical, £nite space.
Our approach differs from most stochastic optimization algorithms like simulated anneal-
ing. Typically, those algorithms use samples from probability distributions (e.g. Boltzmann
distribution in the case of simulated annealing) to help guide search for points x optimizing
an objective function G(x). In contrast, while still utilizing probability distributions (we
too will use a Boltzmann distribution) we search over distributions directly.

A strength of the PC framework is the connections it makes to relate disciplines to one
another. For example, it can be motivated by using information theory to relate bounded
rational game theory to statistical physics [1, 2]. In a noncooperative game the agents are
statistically independent at any stage of the game, with each agent i choosing its move xi by
sampling its probability distribution (mixed strategy) at that instant, qi(xi); the distribution
of the joint-moves is then a product distribution. Inter-agent coupling occurs indirectly,
across time, via the updating of the {qi}ni=1 at the end of each stage. Information theory
shows that the bounded rational equilibrium of the game is the q optimizing an associated
Lagrangian L(q). Applying these ideas to distributed optimization we assign an agent to
each variable xi where the setting of xi ∈ Xi is determined by sampling from qi(xi). As
the agents strategies are independent at any given time, all the variables may be updated
in parallel. The Lagrangian which couples the qi depends on the objective G(x) being
minimized. Coordinate descent on L(q) determines the update of q.

For some games an appropriate Lagrangian is the Kullback-Leibler (KL) distance2 to a
known distribution p: D(q‖p) ≡

∑

x q(x) ln
(

q(x)/p(x)
)

[4]. Typically, p is one of the
ensembles of statistical physics. In the work presented here we will use the canonical
ensemble governed by the Boltzmann distribution p(x) ∝ exp[−G(x)/T ] which arises
as the maximum entropy distribution resulting from a speci£cation of the average payoff
(which is to be minimized) shared by all agents. The KL distance D(q, p) to the Boltzmann
is proportional to the Helmholtz free energy of statistical physics so that the optimizer of
L(q) may be interpreted as the distribution that minimizes the expected value of G, subject
to any provided constraints and to an overall entropy value that sets the rationalities of the
agents. For Q being the set of product distributions, the bounded rational equilibrium of
the game is then a mean-£eld approximation to p.

The game theoretic motivations considered above suggest thatQ should often be the set of
product distributions over X . This choice allows for a highly parallel algorithm, but other
concerns may dictate different Q. In many optimization tasks we seek multiple solutions.
In Constraint Satisfaction Problems (CSPs) [?] in particular, the goal is to identify feasi-
ble solutions which satisfy a set of constraints. For small problem instances exhaustive
enumeration techniques like branch-and-bound are typically used to identify all feasible
solutions of a CSP, or to show that none exist. In cases like these, where we desire multiple
solutions, a product distribution may be a poor choice. A converged product distribution
q(x) =

∏n
i=1 δ(xi − x∗i ) can only represent the single solution x∗. If we desire many

solutions we might descend on the Lagrangian beginning from different starting points (i.e.
different initial q), but there is no guarantee that multiple runs will each generate different
solutions. The PC framework offers a simple solution to this problem – extend Q to con-
struct a single game where we obtain multiple distinct solutions at once. The approach is
to de£ne a space X ′ so that a product distribution over X ′ corresponds to a coupled dis-
tribution across X . We consider a X ′ that results in a mixture of M product distributions
q(x) =

∑

m q0(m)qm(x) [?] over X . This allows for the determination of M solutions
at once with a Lagrangian providing a term which “pushes” the separate products qm(x)
apart to favor distinct solutions.

2The KL distance D(q‖p) between two probability distributions q and p is not a metric but is
non-negative and equal to zero only when q = p.



We begin in section 2 by elaborating a Lagrangian for single product distribution models,
and consider two methods to minimize this Lagrangian in section 3. Section 4 extends
product Lagrangians to allow for mixture models, and shows how mixture models may be
seen as a product distributions over a different space. Experimental validation is presented
for the k-satis£ability CSP problem (section 6.1) and the NK (section 6.2) optimization
problems.

2 The Lagrangian for Product Distributions

We begin with product distributions. To specify the Lagrangian we £x the distribu-
tion p(x) we wish to approximate (in KL distance). If the objective function we wish
to minimize is G(x) (i.e., G is the negative of the utility shared by the bounded ra-
tional agents), then it is natural to consider the T -parameterized Boltzmann distribution
p(x) = exp[−G(x)/T ]/Z(T ). At low T — high rationalities — this distribution is con-
centrated on x having low G values. For a given q the KL distance to p is proportional
to

L(q) = Eq(G)− TS(q) (1)
where Eq(G) ≡

∑

x q(x)G(x), and S(q) ≡ −
∑

x q(x) ln q(x) is the entropy of q. For q’s
which are product distributions S(q) =

∑

i S(qi) where S(qi) = −
∑

xi
qi(xi) ln qi(xi).

The £rst term in L is minimized by a perfectly rational player, i.e. by a player who con-
centrates all probability on the best move. The second term is minimized by a perfectly
irrational player, i.e., by a perfectly uniform mixed strategy qi. So T speci£es the balance
between the rational and irrational behavior of the player. In particular, for T → 0, by
minimizing the Lagrangian we recover the Nash equilibria of the game. From a statistical
physics perspective where T is recognized as the temperature the Lagrangian is simply the
Gibbs free energy of statistical physics for the Hamiltonian G.

Since we are interested in problems with constraints, we write

G(x) = O(x) +

C
∑

a=1

λaca(x)

where O is an objective to be minimized, and the ca are a set of C inequality constraint
functions that are required to be less than or equal to zero. The λa are the Lagrange multi-
pliers that are used to enforce the constraints. In CSP’s we take O(x) = 0.

3 Minimizing the Product Lagrangian

L must be minimized subject to the imposed constraints {ca}Ca=1 on x to determine the
∑n

i=1 |Xi| continuous variables {qi(xi)}ni=1 and the C Lagrange multipliers {λa}Ca=1. As
the optimization variables de£ne a probability we have additional constraints on the opti-
mization variables: 0 ≤ qi(xi) ≤ 1 for all i and xi, and

∑

xi
qi(xi) = 1 for all i. We

consider two approaches to determining the qi and note the gradient descent update rule for
the Lagrange multipliers λa appearing in G.

3.1 Brouwer Updating

Equating the gradient of L with respect to qi(xi) at step t to zero yields the Boltzmann
update rule

qt+1
i (xi) ∝ exp

[

−Eqt
\i
(G|xi)/T

]

(2)

where the private “utilities” for the ith agent is

Eq\i
(G|xi) =

∑

x\i

q\i(x\i)G(xi,x\i) (3)



with x\i = [x1, · · · , xi−1, xi+1, · · · , xn] and q\i(x\i) =
∏n

j=1|j 6=i qj(xj). This local
measure is the expected payoff to agent i as measured by the distribution q\i across the
moves of all other agents when i plays move xi. In the usual way, we may update the
agents one at a time or in parallel with this rule. However, in the parallel updating case we
have no guarantees that the iterations will converge.

3.2 Nearest-Newton Updating

The special structure of the Lagrangian allows for the simple inclusion of second order
information for fast Newton-like descent. This nearest-Newton updating rule begins from
from the observation that the Lagrangian, Eπ(G)− TS(π), for an unrestricted probability
distribution3 π is a convex function of π with a diagonal Hessian. One way to exploit this
fact is as follows: from the current qt make an unrestricted Newton step which will result
in a distribution πt+1 that is typically not in Q, and then £nd the q t+1 ∈ Q that is nearest
to πt+1.

As the Hessian ∂2L/∂π(x)∂π(x′) is diagonal it is simply inverted, and the Newton update
for πt is

πt+1(x) = πt(x)− αtπt(x)

[

G(x)− Eπt(G)

T
+ S(πt) + lnπt(x)

]

which is normalized if πt is normalized and where αt is a step size. As πt will typically
not belong to Q we £nd the product distribution nearest to π t+1 by minimizing the KL
distance D(πt+1‖q) with respect to q. The result is that qi(xi) = πt+1

i (xi), i.e. qi is the
corresponding marginal of πt+1. Thus, assuming that πt is also a product distribution (as
it must be according to our product assumption) then the update rule for qi(xi) is

qt+1
i (xi) = qti(xi)− αtqti(xi)

[Eqt
\i
(G|xi)− Eqt(G)

T
+ S(qi) + ln qi(xi)

]

. (4)

This update maintains the normalization of qi, but may make one or more qi(xi) greater
than 1 or less than 0. In such cases we set qt to be valid probability distribution nearest (in
Euclidean distance) to the suggested Newton update.

3.3 Estimation of Eqt
\i

(G|xi)

Both update rules Eqs. (2) and (4) require Eqt
\i
(G|xi) de£ned in Eq. (3). Depending on the

problem at hand this expectation may be evaluated in closed form, or it may be estimated by
Monte Carlo sampling. For the problems considered here the expectation may be ef£ciently
calculated in closed form, but for completeness we present a Monte Carlo approach that
minimizes the need for excessive sampling.

All that is important in the updates for qi(xi) are the differences Eqt
\i
(G|xi) − Eqt

\i
(G|x′i)

for pairs of distinct moves xi and x′i. The magnitudes of the Eqt
\i
(G|xi) are absorbed into

the normalization of qi. Consequently, rather than the use the sample average of G(x) we
can use the sample average of gi(x) = G(x) − hi(x\i) which will leave the differences
unaffected. The function hi(x\i) can be chosen so that the Monte Carlo estimate has both
low bias (with respect to estimating Eqt

\i
(G|xi)) and low variance [5]. Intuitively, the bias

re¤ects the alignment between the private utilities gi, and the world utility G. At zero bias,
reducing private utility necessarily reduces world utility. Variance instead re¤ects how

3I.e. we do not insist that π is a product or have any particular form, only that all 0 ≤ π(x) ≤ 1
and

∑

x
π(x) = 1.



much the utility depends on the agent’s own move rather than those of the other agents.
With low variance, the agents can perform the individual optimizations accurately with
minimal Monte-Carlo sampling.

The Aristocrat Utility (AU) is the estimator, out of all those guaranteed to have zero bias,
that has minimal variance:

gAUi (xi,x\i) = G(xi,x\i)−
∑

x′i

N−1
x′i

∑

x′′i
N−1
x′′i

G(x′i,x\i) (5)

where Nxi
is the number of times that agent i makes move xi in the most recent set of

Monte Carlo samples. Unfortunately, evaluation of the AU private utility can be expensive
as it requires numerous calls to G. A cheaper alternative can be derived by noting that the
weighting factor N−1

x′i
/
∑

x′′i
N−1
x′′i

is largest for those xi which occur infrequently, i.e. that

have low qi(xi). This observation leads to the Wonderful Life Utility (WLU), which is an
approximation to AU that also has zero bias:

gWLU
i (xi,x\i) = G(xi,x\i))−G(xclamp

i ,x\i). (6)

In the above, xclamp
i = arg minxi

qi(xi) is agent i’s lowest probability move [1, 3].

Further computational speedups in the expectation may be obtained by smoothing the
Monte Carlo estimates by ageing the data. If the updates to q are not changing rapidly
(as will be the case for small step sizes αt or when q nears a local minimum), then
the expectations Eqt

\i
(G|xi) will not vary greatly with t and we may use the estimate at

Eqt
\i
(G|xi) = (1− γ)

∑′
x gi(x) + γEq

t−1

\i

(G|xi) where
∑′

x sums over samples whose ith

component is xi, and where γ is an aging parameter.

In this paper we examine problems for which the required expectations Eqt
\i
(G|xi) may be

obtained in closed form so that there is no need for Monte Carlo approximations. However,
comparisons of the different utility functions and the effects of the ageing parameter may
be found in [REF TO STEFAN B paper]

3.4 Updating Lagrange Multipliers

In order to satisfy the imposed optimization constraints {ca} we must also update the La-
grange multipliers. To minimize communication between agents this is done in the simplest
possible way – by gradient descent. Taking the partial derivatives with respect to λa gives
the update rule

λt+1
a = λta + αtλEq∗

(

ca(x)
)

(7)

where αtλ is a step size and q∗ is the minimizer of L determined as above at the old settings,
λt, of the multipliers.

3.5 Agent Communication

All agents (variables) sample moves (variable settings) independently, and coupling occurs
only in the updates of the qi. As we have seen this update (even to second order) for agent i
depends only on the conditional expectations Eq\i

(G|xi) where q\i describes the strategies
used by the other agents. Thus, if we are using Monte Carlo, then the only information
which needs to be communicated to each agent is the G values upon which the estimate
will be based. Using these values each agent independently updates its strategy (its qi)
in a way which collectively is guaranteed to lower the Lagrangian. If the expectation is
evaluated analytically, the ith agent needs the qj distributions for each of the the j agents
involved in factors with i. For objectives (e.g. the problems considered here) which consists



of a sum of local interactions each of which individually involves only a small subset of
the variables, the number of agents that i needs to communicate with may be much smaller
than n.

4 Mixture Distributions

We have described how a Lagrangian which measures the distance of a product (mean £eld)
distribution to a Boltzmann distribution may be de£ned and minimized in a distributed fash-
ion. We now extend these results to mixtures of product distributions in order to represent
multiple solutions. However, before doing so we demonstrate that a mixture distribution
may be viewed as a product distribution over a different set of variables.

4.1 Coordinate Transformations – mixtures as products

Let f ∈ F indicate the new set of variables in a space of dimension dF . A product distribu-
tion assumption over F (where dF > n), and an appropriately chosen mapping ζζζ : F 7→ X
induces a mixture distribution over X .

Consider an M component mixture distribution over n variables:
∑M

m=1 q
0(m)qm(x) with

∑M
m=1 q

0(m) = 1 and qm(x) =
∏n

i=1 q
m
i (xi). We can write this as a product distribution

space of dimension dF = 1 + Mn where the £rst dimension (indicated as f 0 ∈ [1,M ])
labels the mixtures, and where the remaining Mn dimensions (indicated as fmi ∈ Xi)
correspond to each of the original n dimensions for each of the M mixtures. The F-
space product distribution takes the form qF (f) = q0(f0)

∏M
m=1 q

m(fm) with qm(fm) =
∏N

i=1 q
m
i (fmi ) for f = [f0, f1, · · · , fM ] and fm = [fm1 , · · · , fmN ]. The density in F and

X are related as usual by q(x) =
∑

f qF (f)δ
(

x − ζζζ(f)
)

for some vector-valued mapping
ζζζ : F 7→ X , and with the delta function of vectors being understood component-wise. If

we label the components of ζζζ so that xi = ζi(f
0, f1, · · · , fM ) = ff

0

i we £nd

q(x) =
∑

f0

q0(f0)
∑

f1,··· ,fM

∏

m

qm(fm)
∏

i

δ
(

xi − ζi(f
0, f1, · · · , fM )

)

=
∑

f0

q0(f0)
∑

f1,··· ,fM

∏

m

qm(fm)
∏

i

δ
(

xi − ff
0

i

)

=
∑

f0

q0(f0)
∑

ff0

qf
0

(ff
0

)
∏

i

δ
(

xi − ff
0

i

)

=
∑

f0

q0(f0)qf
0

(x)

Thus, under ζζζ the product distribution qF is mapped to the mixture of products q(x) =
∑

m q0(m)qm(x) (after relabelling f0 to m).

The Lagrangian over the product distribution qF (F) is L is

L(qF ) =
∑

m

q0(m)Eqm(G)− T
[

S(q0) +

M
∑

m=1

S(qm)
]

.

This Lagrangian offers a term to maximize the entropy of the mixture weights, but it pro-
vides no incentive for the distributions qm to differ from each other. Consequently, we



instead consider the Lagrangian over q(x). In this case

L(q) =
∑

x

G
(

x)q(x)− TS(q) =
∑

f

G
(

ζζζ(f)
)

qF (f)− TS(q)

=
∑

m

q0(m)Eqm(G)− TS

(

∑

m

q0(m)qm(x)

)

.

The entropy term differs crucially in these two variants. To see this more clearly it is
convenient to add and subtract T

∑

m q0(m)S(qm) to £nd

L(q) =
∑

m

q0(m)L(qm)− TJ(q) (8)

where L(qm) is given by Eq. (1) and where J(q) ≥ 0 is the Jensen-Shannon (JS) distance,

J(q) = S
(

∑

m

q0(m)qm
)

−
∑

m

q0(m)S(qm) = −
∑

m

∑

x

q0(m)qm(x) ln
q(x)

qm(x)
.

The JS term is maximized when the qm are all different from each other and thus pushes
the optimal qm to capture different solutions. Unfortunately, it also couples all variables
(because of the sum inside the logarithm), preventing a highly distributed solution. Thus,
we replace J with another function which lower-bounds J and which requires less com-
munication between agents.

4.2 A Variational Lagrangian

Following [6], we introduce M variational functions w(x|m) and lower-bound the true JS
distance with

J(q) = −
∑

m

∑

x

q0(m)qm(x) ln

[

1

w(x|m)
q0(m)

w(x|m)q(x)

q0(m)qm(x)

]

=
∑

m

∑

x

q0(m)qm(x) lnw(x|m))−
∑

m

q0(m) ln q0(m)

−
∑

m

∑

x

q0(m)qm(x) ln
w(x|m)q(x)

q0(m)qm(x)
.

Now replace M of the − ln terms with the lower bound − lnx ≥ −νx+ ln ν + 1 obtained
from the Legendre dual of the logarithm to £nd

J(q) ≥ J(q, w, ν) ≡
∑

m

∑

x

q0(m)qm(x) lnw(x|m)−
∑

m

q0(m) ln q0(m)

−
∑

m

νm
∑

x

w(x|m)q(x) +
∑

m

q0(m) ln νm + 1.

Optimization over w and ν maximizes this lower bound. To further aid in distributing the
algorithm we restrict the class of variationalw(x|m) to products: w(x|m) =

∏

i wi(xi|m).
For this choice

J(q, w, ν) ≡
∑

m

q0(m)

{

Bm,m −
∑

m̃

Am,m̃νm̃ + ln νm

}

+ S(q0) + 1 (9)

where Am̃,m
i ≡

∑

xi
qm̃i (xi)wi(xi|m), Am̃,m ≡

∏d
i=1 A

m̃,m
i , Bm,m

i ≡
∑

xi
qmi (xi) lnwi(xi|m), and Bm,m ≡

∑d
i=1 B

m,m
i .4 At any temperature T the varia-

4Note that if wi(xi|m) = 1/|Xi| is uniform across xi then Am̃,m
i = 1/|Xi| and Bm,m

i =
− ln |Xi|. Maximizing over νm we £nd that J(q, w = 1/|X |, ν = ν ∗) = 0. Thus, maximizing with
respect to w increases the JS distance from 0.



tional Lagrangian which must be minimized with respect to q, w and ν (subject to appro-
priate positivity and normalization constraints) is then

L(q, w, ν) =
∑

m

q0(m)L(qm)− TJ(q, w, ν) (10)

with J(q, w, ν) given by Eq. (9).

5 Minimizing the Lagrangian

Equating the gradients with respect to w and ν to zero gives
1

νm
=

1

q0(m)

∑

m̃

q0(m̃)Am̃,m. (11)

wi(xi|m) ∝
q0(m)qmi (xi)

νm

[

∑

m̃

q0(m̃)qm̃i (xi)
Am̃,m

Am̃,m
i

]−1

. (12)

The dependence of L on q0(m) is particularly simple: L(q, w, ν) ≈
∑

m q0(m)E(m) −

T
(

S(q0) + 1
)

up to q0-independent terms and where

E(m) = Eqm(G)− T

(

S[qm] +Bm,m −
∑

m̃

Am,m̃νm̃ + ln νm

)

,

Thus, the mixture weights are Boltzmann distributed with energy function E(m):

q0(m) =
exp
(

−E(m)/T
)

∑

m̃ exp
(

−E(m̃)/T
) . (13)

The determination of qmi (xi) is similar. The relevant terms in L involving qmi (xi) are
L ≈ q0(m)

∑

xi
Em(xi)q

m
i (xi)− TS(qmi ) where

Em(xi) = Eqm
\i

(G|xi)− T

(

lnwi(xi|m)−
∑

m̃

Am,m̃

Am,m̃
i

νm̃wi(xi|m̃)

)

.

As before the conditional expectation Eqm
\i

(G|xi) is
∑

x\i
G(xi,x\i)q

m
\i(x\i). The mixture

probabilities are thus determined as

qmi (xi) =
exp
(

−Em(xi)/T
)

∑

xi
exp
(

−Em(xi)/T
) . (14)

5.1 Agent Communication

These results also require minimal communication between agents. An agent, call this the
0-agent, is assigned to manage the determination of q0(m), and (i,m)-agents manage the
determination of qmi (xi). The M (i,m)-agents for a £xed i communicate their wi(xi|m)

to determine Am,m̃
i . These results along with the Bm,m

i from each (i,m) agent are then
forwarded to the 0-agent who forms Am,m̃ and Bm,m broadcasts this back to all (i,m)-
agents. With these quantities and the local estimates for Eqm

\i
(G|xi), all qmi can be updated

independently.

6 Experiments

We test the probability collective method on two different problems: a k-sat constraint sat-
isfaction problem having multiple feasible solutions, and optimization of an unconstrained
optimization of an NK function.



(a) (b)

Figure 1: (a) Evolution of Lagrangian value (solid line), expected constraint violation (dot-
ted line), and constraint violations of most likely con£guration (dashed line). (b)P (G) after
minimizing the Lagrangian for the £rst 3 multiplier settings. At termination P (G) = δ(G).

6.1 k-sat

The k-sat problem is perhaps the best studied CSP [7]. The goal is to assign N binary
variables xi values so that C clauses are satis£ed. The ath clause involves k variables
labeled by va,j ∈ [1, N ] (for j ∈ [1, k]), and k binary values associated with each a and
labeled by σa,j . The ath clause is satis£ed iff

∨k
j=1[xva,j

= σa,j ] is true so we de£ne the
ath constraint as

ca(x) =

{

0 if
∨k
j=1[xva,j

= σa,j ]

1 otherwise
.

As the ath clause is violated only when all xva,j
= σa,j (with σ ≡ notσ), the Lagrangian

over product distributions can be written as L(q) = λλλ>c(q)− TS(q) where c(q) is the C-
vector of expected constraint violations whose ath component is ca(q) ≡

∑

x ca(x)q(x) =
∏k

j=1 qva,j
(σa,j), and λλλ is the C vector of Lagrange multipliers. The only communication

required to evaluate G and its conditional expectations is between agents appearing in the
same clause. Typically, this communication network is sparse; for the N = 100, k = 3,
C = 430 variable problem we present each agent interacts with only 6 other agents on
average.

We £rst present results for a single product distribution. For any £xed setting of the La-
grange multipliers, the Lagrangian is minimized by iterating Eq. (4). Had the minimization
been done by the Brouwer method, any random subset of variables no two of which appear
in the same clause could be updated simultaneously while still ensuring that the Lagrangian
would decrease at each iteration.

The minimization is terminated at a local minimum q∗. If all constraints are satis£ed at
q∗ we return the solution x∗ = arg maxx q

∗(x) otherwise the Lagrange multipliers are
updated according to Eq. (7). In the present context, this updating rule offers a number of
bene£ts. Firstly, those constraints which are violated most strongly have their penalty in-
creased the most, and consequently, the agents involved in those constraints are most likely
to alter their state. Secondly, the Lagrange multipliers contain a history of the constraint
violations (since we keep adding to λλλ) so that when the agents coordinate on their next
move they are unlikely to return a previously violated state. This mimics the approach used



Figure 2: Each constraint’s Lagrange multiplier versus the iterations when they change.

in taboo search where revisiting of con£gurations is explicitly prevented, and aids in an
ef£cient exploration of the search space. Lastly, rescaling the Lagrangian after each update
of the multipliers by 111>λλλ =

∑

a λa gives L(q) = λ̂λλ>c(q) − T̂ S(q) where λ̂λλ = λλλ/1>λλλ

and T̂ = T/1>λλλ. Since
∑

a λ̂a the £rst term reweights clauses according to their expected
violation, while the temperature T̂ cools in an automated way as the Lagrange multipliers
increase. Cooling is most rapid when the expected constraint violation is large and slows
as the optimum is approached. The parameters αtλ thus govern the overall rate of cooling.
We used the £xed value αtλ = 0.5.

Figure 1 presents results for a 100 variable k = 3 problem using a single mixture. The
problem is satis£able formula uf100-01.cnf from SATLIB (www.satlib.org). It
was generated with the ratio of clauses to variables being near the phase transition, and
consequently has few solutions. 1(a) shows the variation of the Lagrangian, the expected
number of constraint violations, and the number of constraints violated in the most probable
state xmp ≡ arg maxx q(x) as a function of the number of iterations. The starting state is
the maximum entropy con£guration, and the starting temperature is T = 0.0015. The
iterations at which the Lagrange multipliers are updated are indicated by vertical dashed
lines which are clearly visible as discontinuities in the Lagrangian values. To show the
stochastic underpinnings of the algorithm we plot in 1(b) the probability density of the
number of constraint violations obtained as P (G) =

∑

x q(x)δ
(

G − G(x,1)
)

.5 Figure 2

shows the evolution of the renormalized Langrange multipliers λ̂λλ. At the £rst iteration the
multiplier for all clauses are equal. As the algorithm progresses weight is shifted amongst
dif£cult to satisfy clauses.

Results on a larger problem with multiple mixtures are shown in 6.1(a). This is the 250
variable/1065 clause problem uf250-01.cnf from SATLIB with the £rst 50 clauses re-
moved so that the problem has multiple solutions. The optimization was performed by at
each iteration selecting a random subset of variables, no two of which appear in the same
clause and iterating Equations (11), (12), (13), and (14). After convergence the Lagrange

5In determining the density 104 samples were drawn from q(x) with Gaussians centered at each
value of G(x,1) and with the width of all Gaussians determined by cross validation of the log like-
lihood. The fact that there is non-zero probability of obtaining non-integral numbers of constraint
violations is an artifact of the £nite width of the Gaussians.
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Figure 3: (a) The solid colored curves show the number of unsatis£ed clauses in the most
probable con£guration xmp of each of the 4 mixtures vs iterations. The solid black line plots
the expected number of violations, and the dashed black line shows the approximation to
the JS distance. (b) The solid colored curves show the evolution of the G value of the best
xmp con£gurations for each of 5 mixtures versus number of iterations. The dashed black
line shows the corresponding approximation to the JS distance.

multipliers are updated. The initial temperature is 0.1. We plot the number of constraints
violated in the most probable state of each mixture as a function of the number of updates.
as well as the expected number of violated constraints. After 8000 steps three distinct solu-
tions have been found along with a fourth con£guration which violates a single constraint.

6.2 Minimization of NK Functions

The NK model de£nes a family of tunably dif£cult optimization problems [8]. The en-
ergy of N binary variables is de£ned as the average of N contributions local to each
variable xi and involving 0 ≥ K ≥ N − 1 other randomly chosen variables x1

i · · ·x
K
i :

G(x) = N−1
∑N

i=1 Ei(xi;x
1
i , · · ·x

K
i ). For each of the 2K+1 local con£gurations Ei is

assigned a value drawn uniformly from 0 to 1. K controls the number of local minima;
under Hamming neighborhoods K = 0 optimization landscapes have a single global op-
timum and K = N − 1 landscapes have on average 2N/(N + 1) local minima. Further
properties of NK landscapes may be found in [?]. Fig. 6.1(b) plots the energy of a 5 mix-
ture model for a multi-modal N = 300 K = 2 function. The K−1 spins other than i upon
which Ei depends were selected at random. At termination of the PC algorithm 5 distinct
con£gurations are obtained with the nearest pair of solutions having Hamming distance 12.

7 Conclusion

A distributed constrained optimization framework based on probability collectives has been
presented. Motivation for the framework was drawn from an extension of full-rationality
game theory to bounded rational agents. An algorithm that is capable of obtaining one
or more solutions simultaneously was developed and demonstrated on two problems. The
results show a promising, highly distributed, off-the-shelf approach to constrained opti-
mization.

There are many avenues for future exploration. Alternatives to the Lagrange multiplier



method used here can be developed for constraint satisfaction problems. By viewing the
constraints as separate objectives, a Pareto-like optimization procedure may be developed
whereby a gradient direction is chosen which is constrained so that no constraints are wors-
ened. This idea is motivated by the highly successful WalkSAT [?] algorithm for k-sat in
which spins are ¤ipped only if no previously satis£ed clause becomes unsatis£ed as a result
of the change.

Probability collectives also offer promise in devising new methods for escaping local min-
ima. Unlike traditional optimization methods where monotonic transformations of the ob-
jective leave local minima unchanged, such transformations will alter the local minima
structure of the Lagrangian. This observation, and alternative Lagrangians (see [?] for a re-
lated approach using a different minimization criterion) offer new approaches for improved
optimization.
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